Buddhist Temple Arch

  • – Measuring Accuracy: 0.01mm
  • – Type: Sculpture
  • – Scanning Range: 50mm-2000mm
  • – Scanning Mode: Photographic Blue Light Scanner
  • – Effective pixel: 2-5 Million Pixels
  • – Precise 3D Scanning Service Features: Good details, high point cloud density, automatic feature splicing, and automatic turntable

The fabrication of 3D printed products is based on the design files. There are some details and features that always need to be taken into account when designing a 3D printing part, but the best result varies depending on the different 3D printing services.Wonder Tech have a wide range of process and materials to choose from, each with its own benefits and applications.

  • Specifications
  • Parameter
  • Material

In recent years, we have seen that 3D scanning technology has been used to help protect many of China’s cultural heritage. Now, let’s take a look at the handheld 3D scanner that created a very detailed 3D model of architectural landmarks on Buddhist sites, and recorded the process in the case study.
Mount Wutai is one of the four sacred mountains of Chinese Buddhism. The National Tourism Administration of China has listed it as a 5A tourist attraction. There are more than 40 temples here. UNESCO has listed it as a world heritage. Since the first century, millions of people have visited this place every year to pay tribute. Among all the amazing scenic spots in Wutai Mountain, Longquan Temple stands out because of the “unique architectural style” described in the case study, which is largely due to the Chinese painter and mason Hu Mingzhu. In the mid-1920s, he proved himself by designing a shelter in Longquan Temple, and impressed tourists and craftsmen with his beautiful stone carving. The next year, he won the bid to build the arch in front of the temple.
The artist used yellow wax to shape the original design of the arch, and then made a prototype, combining stone carving with traditional Chinese carpentry patterns. All the columns are decorated with art dragons, and the arch is located at the top of the 108 stairs, which is a sacred Buddhist number. The center depicts “the life scene of Buddha”.
Artec pointed out in its case study that “its three gates are formed by four square piers, and the four piers are supported by the front four columns and the back four columns.” “The dome of the gate is famous for its elaborately carved peonies, mature persimmons, traditional brushes, paper fans, and rare books. In addition, more than 20 stone lions with different postures have been found here.”
3D scanning in a very narrow space needs to preserve many details to preserve cultural works, but 3D scanning technology can solve this problem. The requirement is that each element must be rendered in a very accurate way, and there is no gap in the 3D model, and the master must be able to decompose into separate structural parts, so that the entire arch can be carefully examined.
This is the strength of the handheld 3D scanner, because you can move it around the object to capture each surface from any angle.
The team used a set of safe ladders to reach the higher area of the arch because the space was too narrow to use scaffolding equipment. In addition, when scanning a smooth surface at a height of 3000 meters, sunlight is also a problem because it looks brighter and has higher reflection intensity. So some 3D scans must be completed after sunset, but high-precision 3D scanners can analyze slight distortion in structured light after the scanner reaches the object surface and bounces. This makes it possible to accurately reconstruct the scanned shape.
The team spent two weeks collecting all 500 GB of raw data, equivalent to 100000 smartphone images. When customers see the final 3D model one month later, they are very impressed with the high quality of its restoration.
Thanks to the 3D scanning technology, the whole arch, including the top part that is not often seen, is saved in a detailed 3D model, which can now be viewed by artists, architects, Sinology (Chinese Studies) experts and even students with high resolution.

World-Class 3D Scaning Buddhist Temple Arch Services

Wonder Tech is dedicated to providing game-changing solutions- high-performance solutions and faster 3D Scaning Buddhist Temple Arch services with flexible designs.

We have brought nearly 20 years of materials and manufacturing expertise to every layer of your 3D products to help you in unlocking every dimension of 3D printing techniques.

3D Printing Technology And Material Table

At present, the commonly used 3D printing technologies include Multi Jet Fusion(MJF), Selected Laser Sintering(SLS), Stereolithography(SLA), Fused Deposition Modeling (FDM), and Direct metal laser sintering (DMLS).

Cumulative TechnologyBasic Material
Fused Deposition Modeling (FDM)Thermoplastics, eutectic system metals, edible materials
Electronic Beam Freeform Fabrication (EBF)Almost any alloy
Direct Metal Laser Sintering (DMLS)Almost any alloy
Electron Beam Melting (EBM)Titanium alloy
Selective Laser Melting (SLM)Titanium alloy, cobalt chromium alloy, stainless steel, aluminum
Selective Heat Sintering (SHS)Thermoplastic powder
Selective Laser Sintering (SLS)Thermoplastic, metal powder, ceramic powder
Polypropylene (PP)plaster
Laminated Object Manufacturing (LOM)Paper, metal film, plastic film
Stereolithography (SLA)Light hardening resin
Digital Light Processing (DLP)Light hardening resin

Our  Quality Promise

Have an idea? have a napkin sketch? From proof of concept to functional tools for the manufacturing floor, 3-di.com has multiple 3D printing technologies at our disposal to help you bring your design to life. Contact us today!Send your files to reiceve a quote. Accepted file types: Hi-Res .stl, .sldprt. .step, .jpg, .pdfInspection reports included with every orderAccuracy up to 0.01mm, maximum size 1500mm100% visual inspection for every part Highly vetted 3D printing partnersMaterial certifications availableQuality guaranteed. If your parts aren’t made to spec, we’ll make it right.Over 100 machines running 24 hours a dayMore than 60 experienced masters

3D Printing Part Sizes

FDM200 x 200 x 200 mm for desktop printers, up to 900 x 600 x 900 mm for industrial printers
SLA145 x 145 x 175 mm for desktop printers, up to 1500 x 750 x 500 mm for industrial printers
SLS300 x 300 x 300 mm, up to 750 x 550 x 550 mm
DMLS/SLM250 x 150 x 150 mm, up to 500 x 280 x 360 mm
MJF380 x 285 x 380 mm

Dimensional Accuracy In 3D Printing

The dimensional accuracy refers to how accurate the size and form of the printed part are compared to that in the CAD design. Factors that affect dimensional accuracy include material quality, equipment, post-processing, and more. Dimensional tolerance, shrinkage, and support requirements are three key elements to measuring dimensional accuracy. Below are the dimensional tolerance of different 3D processes.

FDM dimensional toleranceprototyping (desktop):±0.5% (lower limit:±0.5 mm), industrial:±0.15% (lower limit:±0.2 mm)
SLA dimensional toleranceprototyping (desktop):±0.5% (lower limit:±0.10 mm) industrial:±0.15% (lower limit:±0.01 mm)
SLS/MJF dimensional tolerance±0.3% (lower limit:±0.3 mm)

Layer Height In 3D Printing

Layer height is a measurement of the amount of material extruded by the printer’s nozzle for each layer of your part. It is measured in microns or millimeters. The selection of layer height is important for some 3D printing technologies, such as SLA and FDM. Below are the typically applied layer height for different processes.

  • – FDM: 50 – 400 μm
  • – SLA: 25 – 100 μm
  • – SLS: 80 – 120 μm
  • – MJF: 80 μm
  • – DMLS/SLM: 30 – 50 μm

3D printing and prototyping have advanced development in recent years. With these improvements, metal 3D printing has become a possibility. Metal 3D printing is used in a variety of sectors. Companies that use metal 3D printing are discovering that 3D printing complicated metal parts in low quantities is considerably more cost-effective than traditional methods of production. Metal 3D printed items are cheaper and have a wider range of material alternatives. Aluminum is a popular metal for 3D printing since it is both sturdy and lightweight. Steel is another extensively used material that is perfect for industrial applications due to its strength, good polish, and temperature tolerance. Metal 3D printing is utilized in a wide range of sectors for a variety of purposes. Functional prototypes, end-use parts, Jigs, tooling, and fixtures are some of the applications.

MetalsApplications
Stainless steelUtensils, cookware, and other items that could ultimately come into contact with water
BronzeVases and other fixtures
GoldRings, earrings, bracelets, and necklaces
NickelCoins
AluminumThin metal products
TitaniumStrong, solid fixtures

3D Printing Plastic Materials Guide

Wonder Tech provides plastic 3D printing services with constantly high efficiency and quick turnaround. Advanced 3D printers and optimal materials allow us to ensure both cheap prices and premium quality.

PlasticsFeaturesApplications
ABSTough, strong, durable, heat-resistant, cost-effective, flexible, reusable, not biodegradableCar bodies, appliances, and mobile phone cases
PLAEasy to work with, environmentally friendly, biodegradable, available in resin and filament with a variety of colorsFood packaging, biodegradable medical devices and implants
PVAWater-solubleOften use to create a support structure for portions of a product that may warp or collapse
PPAffordable, chemical resistant, flammable, and degrades with UV lightHousehold containers, lab equipment, and textiles
Nylon/PAStrong, lightweight, durable, heat and impact-resistant, but not resistant to strong acids and basesApplications that require high mechanical properties and functional prototypes
PEICan withstand high heatInjection mold tools and heat-resistant components
PCHeat resistant up to 135 °C, durable, impact and shatter resistant, moderately flexible, transparent, electrically non-conductivePrototype windows and other clear products
PMMA/AcrylicGood impact strength, comparable clarity, and UV absorption propertiesAutomobile headlights, commercial aquariums and other alternatives to glass
CPVCHigh heat distortion temperature, chemical inertness, dielectric, and flame and smoke propertiesChemical processing, power generation, semiconductor, wastewater treatment
PEEKWear-resistant, good weight-to-strength ratio, high thermomechanical propertiesMedical custom-made implants, devices, aerospace and automotive parts
PETGHigh impact resistance, excellent chemical and moisture resistanceCompliant mechanisms, water bottles, electronic enclosures
TPUFlexible, abrasion-resistant, resistant to impacts and many chemicalsSporting goods, aerospace and automotive
PETP/ErtalyteHigh dimensional stability, mechanical strength, low moisture absorption, physiologically inertThin films, containers for liquid drinks