Art Dancer Sculpture

  • – Accuracy: 0.2mm
  • – Process: 3D Scanning
  • – Finlishing: Custom
  • – Process: 3D Scanning
  • – Easy to clean and maintain
  • – High brightness and good appearance
  • – Excellent quality and toughness
  • – Great performance and durability

The fabrication of 3D printed products is based on the design files. There are some details and features that always need to be taken into account when designing a 3D printing part, but the best result varies depending on the different 3D printing services.Wonder Tech have a wide range of process and materials to choose from, each with its own benefits and applications.

  • Specifications
  • Parameter
  • Material

The client wanted to create a 3D digital file of the dancer sculpture on the central lawn. Wonder Tech quickly implemented a custom 3D file service for the sculpture through 3D scanning and 3D modelling technology, let’s take a look at the process.

Physical View Of The Sculpture

1. Choosing Night For Scanning Work

Usually 3D scanning is carried out indoors so that other light reflections are reduced for best results. For large sculptures that cannot be scanned indoors, a cloudy day or night is chosen when there is no direct sunlight.

In this case, we chose to scan the Dancer sculpture at night because of the weather.

2. Spraying The Sculpture With Developer And Applying Scanning Markers

Large outdoor sculptures can often be directly sprayed with a developer that increases the efficiency and accuracy of the scanning process without the fear of damaging the sculpture.

Scanning After The Marker Points Have Been Applied

Marking points can help the 3D scanner find physical surface features more accurately to speed up the scanning process.

3. Manual Handheld X5 Scanner For Scanning Sculptures

Dancer Sculpture 3D Scanning Process

4. Adjustment Of The Scanned Data To Obtain A Complete 3D Digital File

The 3D digital file obtained from the scan is adjusted and repaired by the software to ensure that there are no problems and that it is ready for direct 3D printing or other processing.

Aftercare Process: Vacuum Coating The Surface Of The Dancer Sculpture

The ability of 3D scanning technology to measure the external surface dimensions of a large sculpture in a very short period of time, preserving the full dimensional data and exterior shape, has very many applications in the conservation and restoration of cultural heritage.

Also, because of the ease and adjustability of 3D digital files, it is ideal for designers who want to equivalently adjust the dimensions of a sculpture for production, or to make modifications and secondary development of the object.

World-Class 3D Scanning Dancer Sculpture Services

Wonder Tech is dedicated to providing game-changing solutions- high-performance solutions and faster 3D Scanning Dancer Sculpture services with flexible designs.

We have brought nearly 20 years of materials and manufacturing expertise to every layer of your 3D products to help you in unlocking every dimension of 3D printing techniques.

3D Printing Technology And Material Table

At present, the commonly used 3D printing technologies include Multi Jet Fusion(MJF), Selected Laser Sintering(SLS), Stereolithography(SLA), Fused Deposition Modeling (FDM), and Direct metal laser sintering (DMLS).

Cumulative TechnologyBasic Material
Fused Deposition Modeling (FDM)Thermoplastics, eutectic system metals, edible materials
Electronic Beam Freeform Fabrication (EBF)Almost any alloy
Direct Metal Laser Sintering (DMLS)Almost any alloy
Electron Beam Melting (EBM)Titanium alloy
Selective Laser Melting (SLM)Titanium alloy, cobalt chromium alloy, stainless steel, aluminum
Selective Heat Sintering (SHS)Thermoplastic powder
Selective Laser Sintering (SLS)Thermoplastic, metal powder, ceramic powder
Polypropylene (PP)plaster
Laminated Object Manufacturing (LOM)Paper, metal film, plastic film
Stereolithography (SLA)Light hardening resin
Digital Light Processing (DLP)Light hardening resin

Our  Quality Promise

Have an idea? have a napkin sketch? From proof of concept to functional tools for the manufacturing floor, 3-di.com has multiple 3D printing technologies at our disposal to help you bring your design to life. Contact us today!Send your files to reiceve a quote. Accepted file types: Hi-Res .stl, .sldprt. .step, .jpg, .pdfInspection reports included with every orderAccuracy up to 0.01mm, maximum size 1500mm100% visual inspection for every part Highly vetted 3D printing partnersMaterial certifications availableQuality guaranteed. If your parts aren’t made to spec, we’ll make it right.Over 100 machines running 24 hours a dayMore than 60 experienced masters

3D Printing Part Sizes

FDM200 x 200 x 200 mm for desktop printers, up to 900 x 600 x 900 mm for industrial printers
SLA145 x 145 x 175 mm for desktop printers, up to 1500 x 750 x 500 mm for industrial printers
SLS300 x 300 x 300 mm, up to 750 x 550 x 550 mm
DMLS/SLM250 x 150 x 150 mm, up to 500 x 280 x 360 mm
MJF380 x 285 x 380 mm

Dimensional Accuracy In 3D Printing

The dimensional accuracy refers to how accurate the size and form of the printed part are compared to that in the CAD design. Factors that affect dimensional accuracy include material quality, equipment, post-processing, and more. Dimensional tolerance, shrinkage, and support requirements are three key elements to measuring dimensional accuracy. Below are the dimensional tolerance of different 3D processes.

FDM dimensional toleranceprototyping (desktop):±0.5% (lower limit:±0.5 mm), industrial:±0.15% (lower limit:±0.2 mm)
SLA dimensional toleranceprototyping (desktop):±0.5% (lower limit:±0.10 mm) industrial:±0.15% (lower limit:±0.01 mm)
SLS/MJF dimensional tolerance±0.3% (lower limit:±0.3 mm)

Layer Height In 3D Printing

Layer height is a measurement of the amount of material extruded by the printer’s nozzle for each layer of your part. It is measured in microns or millimeters. The selection of layer height is important for some 3D printing technologies, such as SLA and FDM. Below are the typically applied layer height for different processes.

  • – FDM: 50 – 400 μm
  • – SLA: 25 – 100 μm
  • – SLS: 80 – 120 μm
  • – MJF: 80 μm
  • – DMLS/SLM: 30 – 50 μm

3D printing and prototyping have advanced development in recent years. With these improvements, metal 3D printing has become a possibility. Metal 3D printing is used in a variety of sectors. Companies that use metal 3D printing are discovering that 3D printing complicated metal parts in low quantities is considerably more cost-effective than traditional methods of production. Metal 3D printed items are cheaper and have a wider range of material alternatives. Aluminum is a popular metal for 3D printing since it is both sturdy and lightweight. Steel is another extensively used material that is perfect for industrial applications due to its strength, good polish, and temperature tolerance. Metal 3D printing is utilized in a wide range of sectors for a variety of purposes. Functional prototypes, end-use parts, Jigs, tooling, and fixtures are some of the applications.

MetalsApplications
Stainless steelUtensils, cookware, and other items that could ultimately come into contact with water
BronzeVases and other fixtures
GoldRings, earrings, bracelets, and necklaces
NickelCoins
AluminumThin metal products
TitaniumStrong, solid fixtures

3D Printing Plastic Materials Guide

Wonder Tech provides plastic 3D printing services with constantly high efficiency and quick turnaround. Advanced 3D printers and optimal materials allow us to ensure both cheap prices and premium quality.

PlasticsFeaturesApplications
ABSTough, strong, durable, heat-resistant, cost-effective, flexible, reusable, not biodegradableCar bodies, appliances, and mobile phone cases
PLAEasy to work with, environmentally friendly, biodegradable, available in resin and filament with a variety of colorsFood packaging, biodegradable medical devices and implants
PVAWater-solubleOften use to create a support structure for portions of a product that may warp or collapse
PPAffordable, chemical resistant, flammable, and degrades with UV lightHousehold containers, lab equipment, and textiles
Nylon/PAStrong, lightweight, durable, heat and impact-resistant, but not resistant to strong acids and basesApplications that require high mechanical properties and functional prototypes
PEICan withstand high heatInjection mold tools and heat-resistant components
PCHeat resistant up to 135 °C, durable, impact and shatter resistant, moderately flexible, transparent, electrically non-conductivePrototype windows and other clear products
PMMA/AcrylicGood impact strength, comparable clarity, and UV absorption propertiesAutomobile headlights, commercial aquariums and other alternatives to glass
CPVCHigh heat distortion temperature, chemical inertness, dielectric, and flame and smoke propertiesChemical processing, power generation, semiconductor, wastewater treatment
PEEKWear-resistant, good weight-to-strength ratio, high thermomechanical propertiesMedical custom-made implants, devices, aerospace and automotive parts
PETGHigh impact resistance, excellent chemical and moisture resistanceCompliant mechanisms, water bottles, electronic enclosures
TPUFlexible, abrasion-resistant, resistant to impacts and many chemicalsSporting goods, aerospace and automotive
PETP/ErtalyteHigh dimensional stability, mechanical strength, low moisture absorption, physiologically inertThin films, containers for liquid drinks